
Private Information Retrieval: 
are we close to make it 

practical?
Summer School in Cryptography

Sofía Celi
cherenkov@riseup.net



Private Information Retrieval (PIR)

A Private Information Retrieval (PIR) scheme provides the ability for clients to 
retrieve items from an online public (*) database of m elements, without 
revealing anything about their queries to the untrusted host server(s)

● Parties:
a. Client(s)
b. Server (one or multiple)

● Steps:
○ Query 
○ Response 
○ Parse

2



3

assuming the DB is 
public and it is 
index by digits



Private Information Retrieval (PIR)

Two types (sort of):

1. Information-theoretic PIR: client interacting with multiple non-colluding 
servers

2. Computational-theoretic PIR: client interacting with a single server, 
provides computational security based on cryptographic assumptions:
a. Stateless PIR:

■ The client does not store any (pre)information in order to launch queries
■ The schemes (a bunch!) perform worse than downloading the whole DB or they 

require computational overheads

4



Private Information Retrieval (PIR)

Two types (sort of):

1. Information-theoretic PIR: client interacting with multiple non-colluding 
servers

2. Computational-theoretic PIR: client interacting with a single server, 
provides computational security based on cryptographic assumptions:
a. Stateless PIR
b. Stateful PIR: provides a “state” (or hint/digest) used as a “preprocessing” step amortised 

over n client queries

5



Private Information Retrieval (PIR)

Two types (sort of):

1. Information-theoretic PIR: client interacting with multiple non-colluding 
servers

2. Computational-theoretic PIR: client interacting with a single server, 
provides computational security based on cryptographic assumptions:
a. Stateless PIR
b. Stateful PIR

Idea: encrypt the query instead of secret-sharing it

6



Private Information Retrieval (PIR)

Limitations in Computational-theoretic PIR: 

● Expensive pre-processing in terms of computation or communication
● High online-phase bandwidth consumption
● Lack of practical security parameters
● Lack of simple, open-source, available, verified implementations

7



Current look

❏ Very active research area

❏ Promising efficiency (computational/communicational/financial)

❏ Variety of applications

8



FrodoPIR
(but also SimplePIR)

https://eprint.iacr.org/2022/981
https://eprint.iacr.org/2022/949 

9

https://eprint.iacr.org/2022/981
https://eprint.iacr.org/2022/949


10



Core ideas

● Built directly upon the learning with errors (LWE) problem only (similar to 
FrodoKEM)

○ Security relies on decisional LWE
○ Security is conservative (128 bits for 2^52 client queries): some parameters can be 

modified in order to make the scheme more efficient

● Highly configurable
○ Differences with SimplePIR: different pre-processing encoding, and 

the addition of a query pre-processing stage
● Tailored for efficiency and real-world applications

11



12



13



Notation

● DB is an array of  m elements, each made up of w bits.
● Each entry is associated with the index i that corresponds to its position in 

the array.
● There are C clients that will each launch a maximum of c queries against 

DB.
● LWE:

a. n and q are the LWE dimension and modulus, respectively
b. ρ is the number of bits packed into each entry of the DB matrix (0 < ρ < q)
c. χ is the uniform ternary distribution over {-1, 0, 1}
d. λ is the concrete security parameter. 

● PRG(μ, n, m, q) denotes a pseudorandom generator that expands a seed 

14



FrodoPIR (offline: server)

● Server setup: The server constructs their database containing m 
elements, and samples a seed 

● Server pre-processing: The server:

- Derives a matrix  

- Runs  

- Runs 

- Publishes the pair  

The “hint” is 

15



FrodoPIR (offline: server)

● Setup: The server constructs their database containing m elements, and 
samples a seed 

● Pre-processing: The server:

- Derives a matrix  

- Runs  

- Runs 

- Publishes the pair  

       remains secure even with multiple queries -2^52-.

16



FrodoPIR (offline: client)

Pre-processing. Each client:

- Downloads  
- Derives  
- Samples c vectors:  

-    
- Computes: 

 

- Stores the pairs as the set 

Essentially, computes c sets of preprocessed query parameters (optional step).

17



FrodoPIR (online: client)

Query generation. For the index i that the client wishes to query, the client 
generates a vector (the all-zero vector except where fi[i] = q/ρ):

It then pops a pair (b, c) from internal state and computes:

The client uses a single set of preprocessed query parameters to produce an 
“encrypted” query vector, which is sent to the server

18



FrodoPIR (online: server)

Response. The server receives b’ from the client, and responds with:

 

   

Essentially, the server responds by multiplying the vector with their DB matrix

Post-processing. The client receives c’, and calculates:

 

Essentially, the client get the value by “decrypting” using their pre-processed query 

parameters)
19



FrodoPIR Properties

Security: Indistinguishability of client queries. It assumes a semi-honest server 
that follows the protocol correctly and attempts to learn more based on the 
client queries they receive:

Server view:     is distributed uniformly in 

under the assumption that decional-LWE is difficult to solve

● Regev encryption remains secure even when the same matrix A is used to 
encrypt many messages, provided that each ciphertext uses an 
independent secret vector s and error vector e 

[83] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious 
transfer.

20



FrodoPIR Properties

Efficiency. PIR schemes require a communication overhead smaller than the 
solution of having clients download the entire server database. In the stateful 
PIR case, it should hold when amortizing costs over the number of client 
queries.

21



FrodoPIR Properties

Efficiency. 

22



FrodoPIR Properties

Efficiency. 

23



24

https://github.com/brave-experiments/frodo-pir 

https://github.com/brave-experiments/frodo-pir


25



26



What are the advantages?

1. It is simple: easy to explain, easy to push to production

2. LWE-based PIR schemes are simple to implement: they require no 
polynomial arithmetic or fast Fourier transforms

3. LWE-based PIR schemes do not require the server to store any extra 
per-client state. In contrast, many schemes based on Ring LWE rely on 
optimizations that require the server to store one “key-switching hint” for each 
client 

4. LWE-based PIR schemes are faster and cheaper: the encryption scheme 
needs to be linearly (not fully) homomorphic, so we can use smaller and more 
efficient lattice parameters

27



But, is this enough?

● Databases are not structured in this simple way
○ They are indexed by keywords

○ They are structured as JSON, Graphs, Excel spreadsheets

● The queries we are interested in are not simple:
○ Complex queries with AND/OR statements

○ Combination of database systems

○ Approximate nearest neighbor (ANN) elements

● Databases are constantly updated

● Is the security we assume enough?
○ What about malicious security?

○ What about private databases?
28



But, is this enough?

● Databases are not structured in this simple way
○ They are indexed by keywords

○ They are structured as JSON, Graphs, Excel spreadsheets

● The queries we are interested in are not simple:
○ Complex queries with AND/OR statements

○ Combination of database systems

○ Approximate nearest neighbor (ANN) elements

● Databases are constantly updated

● Is the security we assume enough?
○ What about malicious security?

○ What about private databases?
29

Not all systems are 
created equally 



Real databases

col_1 col_2 col_3

x_1 y_1 z_1

x_2 y_2 z_2

x_3 y_3 z_3

30



Non-uniform data
a a b b

c c d d

e e f f

g g h h

a a b b

b b b b

b c d d

d e e f

❏ Data-specific privacy?
❏ Efficiency for multi-layer keys?
❏ Client storage?

Goals:

- Design PIR with 
real databases in 
mind.

- Security and 
performance 
modelling 
should take 
database 
format into 
account. 31



Which applications?
Some deployments / related technologies exist:

❏ Brave (compromised credential-checking, TBD) 
❏ Blyss (https://github.com/blyssprivacy/sdk)
❏ Google (Device Enrollment)
❏ Microsoft (Password Monitor)

More complex use-cases (not deployed):

❏ Approximate nearest-neighbor: Brave News
❏ Private search: TipToe
❏ Oblivious document ranking: Coeus

Open questions:
- Build complex functions embedded directly into queries
- Basic PIR used as part of higher-level application

32

https://brave.com/research/frodo-pir-simple-scalable-single-server-private-information-retrieval/
https://github.com/blyssprivacy/sdk
https://security.googleblog.com/2021/10/protecting-your-device-information-with.html
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://brave.com/brave-news/
https://eprint.iacr.org/2023/1438
https://eprint.iacr.org/2022/154


Differing update-cycles depending on application

❏ Slower cadence: contact discovery, compromised credentials
❏ Faster cadence: safe browsing, recommendation systems (*)

Stateful PIR: require state regeneration with every update

Updatable databases

Goals:
- More benchmarking of stateful PIR with incremental updates
- More efficient (and simpler®) stateless PIR

33



Different performance metrics matter to different systems

❏ Financial costs may be more important than bandwidth for 
those without hardware

❏ Server load may be more important for CDNs, Google, etc.
❏ Client load / bandwidth for mobile devices 

Configurability

Question: Separate approaches for each criteria? Or support for simple 
re-parametrisation?

34



❏ Does a semi-honest, public DB satisfy all applications?
❏ Probably not: compromised credentials, contact-checking…

❏ Private DB + semi-honest seems important
❏ Privacy measures are ad-hoc (OPRF, masking)
❏ Implications: sub-optimal rounds, not post-quantum…

❏ Authenticated/verifiable/malicious PIR exists, is this what we 
should be using everywhere?

Important security properties

35



❏ FHE-based PIR is very complex
❏ Libraries are hard to audit/verify
❏ Non-standard security parameters
❏ Low-level optimisations required for PIR

❏ AHE-based is simpler and configurable

Simplicity® 

Question: Do we want widespread or centralised deployments?

36



CHALAMET-PIR
(one solution)

https://eprint.iacr.org/2024/092  

37

https://eprint.iacr.org/2024/092


Core ideas

● Very simple (®) idea

38



Core ideas

1. Have a DB structured as a Key-Value (KV) map (size m, where each 
element v is indexed by a key k)

2. Convert this map into a filter (F) structure (think on a Bloom Filter) with a 
set of k hash functions and some false positive probability
a. The filter has a function that allows to recover v: 
b. The filter is broken into d columns: interpret it as a matrix with çm (*) rows

3. Query for an element with a long vector where there are 1s on  

39

(*) 1.08 ≤ ç ≤ 1.13, depending on the choice of k = {3, 4}



Basic construction

● Same ideas as previous in literature, but:
○ We leverage the usage of Binary Fuse Filters

■ Minimise the space and query overheads of key-value filters, while maintaining 

quick access times

■ Reconstruct using XOR

■ Divide the filter into many more segments

○ We can use any LWE-based PIR scheme

https://lib.rs/crates/haveibeenpwned 

https://sts10.github.io/2023/01/11/playing-with-binary-fuse-filters.html 
40

https://lib.rs/crates/haveibeenpwned
https://sts10.github.io/2023/01/11/playing-with-binary-fuse-filters.html


41



42



Properties

● Security: Same as FrodoPIR (LWE-based), but:
○ We allow for false-positives, as we assume a public database. What impact does this 

have?
○ We provide a random value in case of non-inclusion -> leakage impact

● Efficiency: Same as FrodoPIR (LWE-based), but:
○ Blow-up due to filter: ç

● Is it sufficient?
○ Assumes the same length of elements

43



What else?

44



Upcoming solutions

● PIR for k-ANN
○ Real applications to search engines and recommendation systems
○ State-of-the-art k-ANN algorithms

● Integrate new security properties:
○ Expand to symmetric model
○ Expand to malicious security

● Deal with complex queries and complex databases
○ Not all databases are created equally:

■ Brave News
■ Brave Search
■ Brave CT



Upcoming solutions

● PIR for k-ANN
○ Real applications to search engines and recommendation systems
○ Graph-like structure that can be represented as a matrix

■ Dig into graph/matrix techniques to spectrally reason about them
○ State-of-the-art k-ANN algorithms

Future paper soon!, but:

○ How to deal with updates in a graph/matrix structure?



Upcoming solutions

● PIR for k-ANN
● Integrate new security properties:

○ Expand to symmetric model
○ Expand to malicious security

● Deal with complex queries and complex databases
○ Not all databases are created equally:

■ Brave News
■ Brave Search
■ Brave CT

● A simple but needed SoK



My (sad) take

● We are very behind real databases-systems
● We are very behind state-of-the-art data structure/graph’s research

○ Why haven’t we look beyond Cuckoo filters and Merkle Trees?

● We are very behind actual deployment

But we are making progress!



Building steps

● Keyword-based PIR:
○ “Call Me By My Name: Simple, Practical Private Information Retrieval for Keyword 

Queries”: https://eprint.iacr.org/2024/092 
○ “Binary Fuse Filters: Fast and Smaller Than Xor Filters”: https://arxiv.org/abs/2201.01174 

● Security: 
○ “Fully Malicious Authenticated PIR”: https://eprint.iacr.org/2023/1804 
○ “VeriSimplePIR: Verifiability in SimplePIR at No Online Cost for Honest Servers”: 

https://eprint.iacr.org/2024/341 
● Complex queries:

○ “Private Web Search with Tiptoe”: https://eprint.iacr.org/2023/1438  
○ “Coeus: A System for Oblivious Document Ranking and Retrieval”: 

https://eprint.iacr.org/2022/154 
● Updatability:

○ “Incremental Offline/Online PIR” 
https://www.cis.upenn.edu/~sga001/papers/incpir-sec22.pdf 

https://eprint.iacr.org/2024/092
https://arxiv.org/abs/2201.01174
https://eprint.iacr.org/2023/1804
https://eprint.iacr.org/2024/341
https://eprint.iacr.org/2023/1438
https://eprint.iacr.org/2022/154
https://www.cis.upenn.edu/~sga001/papers/incpir-sec22.pdf


So, you want to research on this?

● Expand the security model:
○ How does leakage impact it?
○ Is it attackable?

● Introduce ‘updatable’ techniques
● Look at other applications of DB:

○ Do we fulfil them?
● How do we deal with variable-length elements?

○ Is padding enough?
● Can we make it simple with the ring?
● Can we look at state-of-the-art data structures/graphs/matrix theory?

Thank you Henry Corrigan-Gibbs, Alex Davidson, Alexandra Henzinger, Stefano Tessaro, Eli Richarson for 
input and discussing all of this!



An announcement

PIR workshop at PETS: https://github.com/private-retrieval/wip 

https://www.womenincryptography.com/ https://criptolatino.org/ 

https://github.com/private-retrieval/wip
https://www.womenincryptography.com/
https://criptolatino.org/


Thank you!
@claucece

www.sofiaceli.com  

http://www.sofiaceli.com

